
Planning a Greenhouse Fertilization Program: Challenges in Plant Fertilization

Neil Mattson Assistant Professor, Floriculture Department of Horticulture, Cornell University nsm47@cornell.edu

Outline

- pH control
- Alkalinity and control with acid injection
- How to interpret water/media tests
- Visual diagnosis of nutrient disorders
- Fertilizer adjustments when growing plants cooler
- Using controlled release fertilizers
- Pour-Thru –to measure media EC and pH

What is pH? Why should we care?

Source: S. Lower, http://en.wikipedia.org/wiki/Image:PH_scale.png

Why do we care about pH?

Half of all nutritional disorders associated with container plant production can be attributed to pH-related problems

pH affects nutrient solubility (roots can only take up dissolved nutrients)

Effect of pH on container media nutrient availability

Source: Douglas Bailey

http://www.ces.ncsu.edu/depts/hort/floriculture/plugs/alkalinity.pdf

pH Problems

pH too low:

- Toxicity of Iron, Manganese, Zinc, Copper
- Deficiency of Calcium, Magnesium
- Leaching of phosphorus

pH too high:

- Deficiency of Iron, Manganese, Zinc, Copper, Boron
- may promote spread of certain diseases (ex: for *Thielaviopsis* keep pH less than 6.0)

Factors that affect the pH of the root media:

- the media that is used
 - <u>acidic media</u> (pH less than 7): sphagnum peat moss, pine bark, coir, many composts
 - <u>neutral media</u> (pH around 7): perlite, sand, polystyrene
 - <u>alkaline media</u> (pH greater than 7): bark from hardwood trees, vermiculite, rockwool, rice hulls
- Limestone/Dolomite additions to container media

Factors that affect the pH of the root media:

- the alkalinity of the water carbonates/bicarbonates which will increase the pH of the container media over time
- fertilizers that are used
 - ammonium or urea based fertilized tend to acidify the root media
 - nitrate based fertilized tend to increase the root media pH

In General: 5.4 to 6.4

Can further break down based on efficiency of taking up micronutrients

- Iron-inefficient group (Petunia group)
- require a lower pH (5.4-6.0)
- Iron deficiency at high pH

General group

- require a moderate pH (5.8-6.4)
 - Most plants, chrysanthemum, poinsettia

Iron-efficient group (Geranium group)

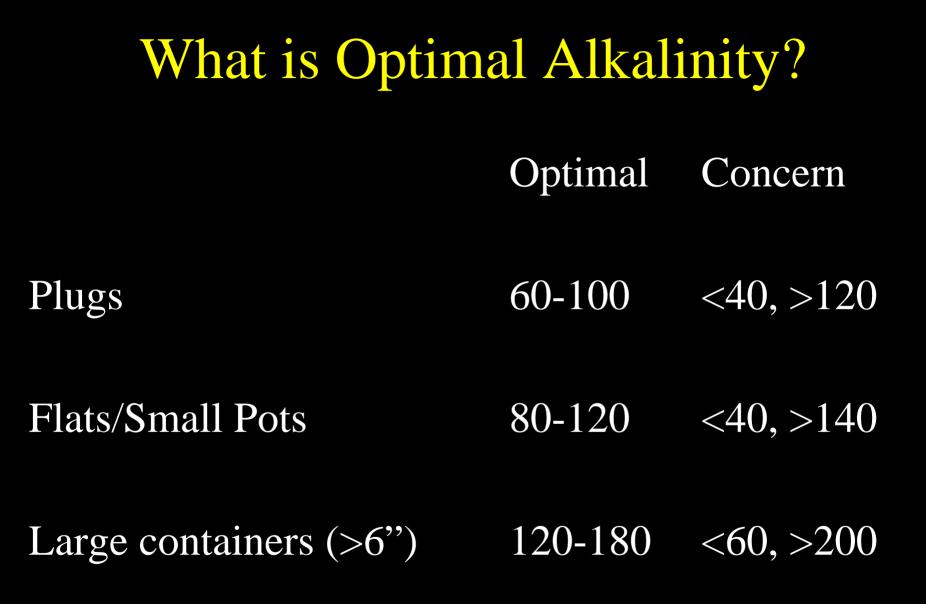
- Require a higher pH 6.0-6.6
- Iron/Manganese toxicity at low pH (bronze speckle)

Image source: Tina Smith, UMass

Ways to Lower pH

- Gradual methods:
 - Use an ammonium or urea based fertilizer
 - Continual acid injection to decrease water alkalinity to 120 ppm
- Quick methods:
 - One-time sulfuric acid drench (1.8 ounces sulfuric acid / 100 gallons of water)

Ways to Raise pH


- Gradual methods:
 - Stop acidifying water if acid is being injected
 - Use a nitrate based fertilizer (basicity)
- Quick methods:
 - Flowable lime or Potassium bicarbonate drench (see handout for tips)

Understanding Alkalinity

Alkalinity – the ability of water to neutralize acids

- due to the presence of dissolved alkalis
- Do not confuse with "Alkaline"
- Reported in terms of ppm CaCO₃ (or meq; 50 ppm = 1 meq CaCO₃)
- Typically varies from 50-500 ppm

Problems with High Alkalinity

- Rapid media pH rise
- Magnesium deficiency (interveinal chlorosis of lower leaves)

Problems with Low Alkalinity

- pH of container media will change more rapidly
- Calcium deficiency
- Low pH induced Iron/Manganese Toxicity

Correcting High Alkalinity

- 1) Change or blend the water source
- 2) Use an acidic fertilizer
- 3) Inject acid into irrigation water

Guidelines for matching fertilizer acidity with water alkalinity to achieve a stable pH

	1	
CCE	% Acidic	
(in lbs./ton)	Nitrogen	Examples
>500 acidic	>50%	20-20-20
		21-7-7
200 acidic –	40%	20-10-20
450 acidic		21-5-20
150 acidic –	20% - 30%	17-5-17
150 basice		20-0-20
> 200 basic	<10%	13-2-13
		14-0-14
-	(in lbs./ton) >500 acidic 200 acidic – 450 acidic 150 acidic – 150 basicc	(in lbs./ton) Nitrogen >500 acidic >50% 200 acidic – 40% 450 acidic 20% - 30% 150 basice 20% - 30%

¹% acidic nitrogen is calculated as the sum of ammoniacal and urea nitrogen divided by the total nitrogen contained in the formula

Source: Paul Fisher and William Argo, http://extension.unh.edu/agric/AGGHFL/pHarticl.pdf

Fertilizer Selection by Water Type

Select Water Type
Select
CONTINUE

Don't know your water type?

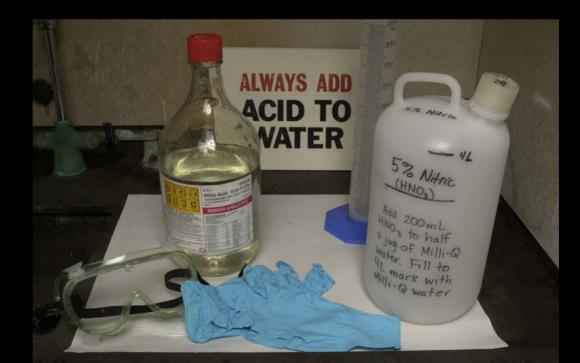
WATER TYPE	ALKALINITY	CALCIUM	MAGNESIUM
1	Very low: 0- 60 ppm	0-60 ppm	0-30 ppm
2	Moderately Low: 60-150 ppm	0-60 ppm	0-30 ppm
3	Moderately High: 150- 200 ppm	50+ ppm	0-30 ppm
4	Very High: 200-240+ ppm	50+ ppm	0-30 ppm

Example from: http://petersabc.com/

Factors when using fertilizer to adjust pH

- The fertilizer approach does not work well in dark/cool weather
- Sometimes ammonium will not drop pH high lime in media, high alkalinity

Acid Injection



Acidification reduces the amount of carbonates and bicarbonates

H⁺ (from acid) + HCO₃⁻ (in water) \rightarrow CO₂ + H₂O

Which Acid to Use?

- Safety
 - Nitric acid is very caustic and has harmful fumes
- Cost
- Nutrients from Acid

Acid Injection Tips

- Do not mix acid stock solutions with fertilizer stock solutions
- Use a separate injector
- May take a week of acid injection to stabilize (initially acid may react with hard water accumulation in pipes)
- Online acid calculator:

http://www.ces.ncsu.edu/depts/hort/floriculture/software/alk.html

How to use a soil/water test to look for problems:

1) Look at **EC** - electrical conductivity (also called soluble salt level)

- to raise EC: increase concentration of fertilizer
- to lower EC: leach with clear water; lower fertilizer concentration

2) Look at **pH**

- To lower pH...
- To raise pH...

3.) Look at **macronutrients** levels

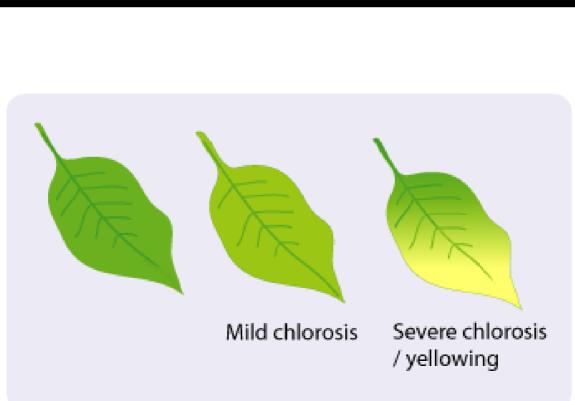
4. Look at **micronutrient** levels

- To solve a micronutrient deficiency:
- check media pH
- liquid application with micronutrient fertilizer
- use a complete fertilizer that contains micronutrients

5.) Two **ratios** to look at:

 Calcium:Magnesium (this should be about 3:1) if there is too much magnesium the plant will have a hard time taking up calcium and etc.

• Nitrate:Potassium (this should also be 3:1)


Some other causes of fertility problems

- poor weather (example low temperature can cause **ammonium toxicity**)
- poor drainage of container
- over/under watering
- poor light
- poor water quality

Visual Diagnosis of Nutrient Disorders

Definitions

• Chlorosis – yellowing of plant tissue (due to reduction in chlorophyll)

Common Nutrient Disorders

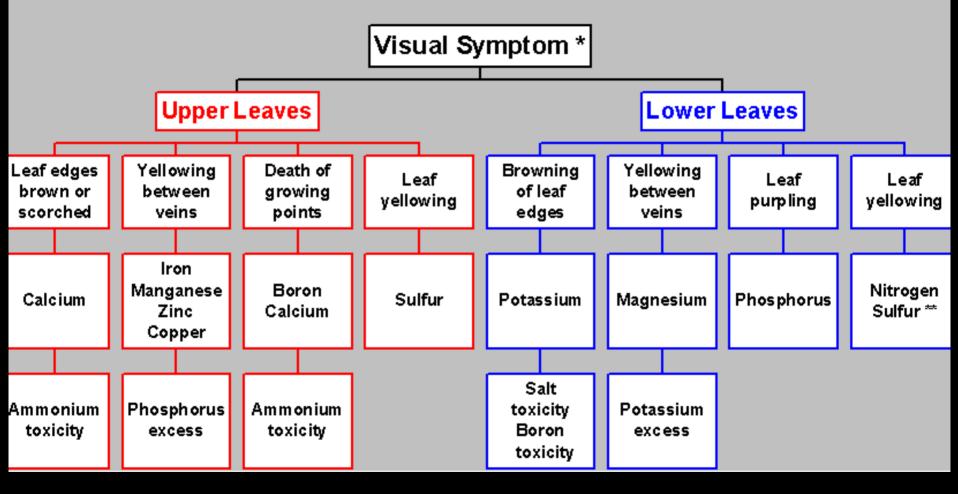
Definitions

• Necrosis – death (browning) of plant tissue

Common Nutrient Disorders

Definitions

• Interveinal - the region between the veins


Common Nutrient Disorders

Definitions

• Margins – the edges of the leaf

KEY TO VISUAL DIAGNOSIS OF NUTRIENT DISORDERS

Source: Bierman and Rosen, http://www.extension.umn.edu/distribution/horticulture/M1190.html

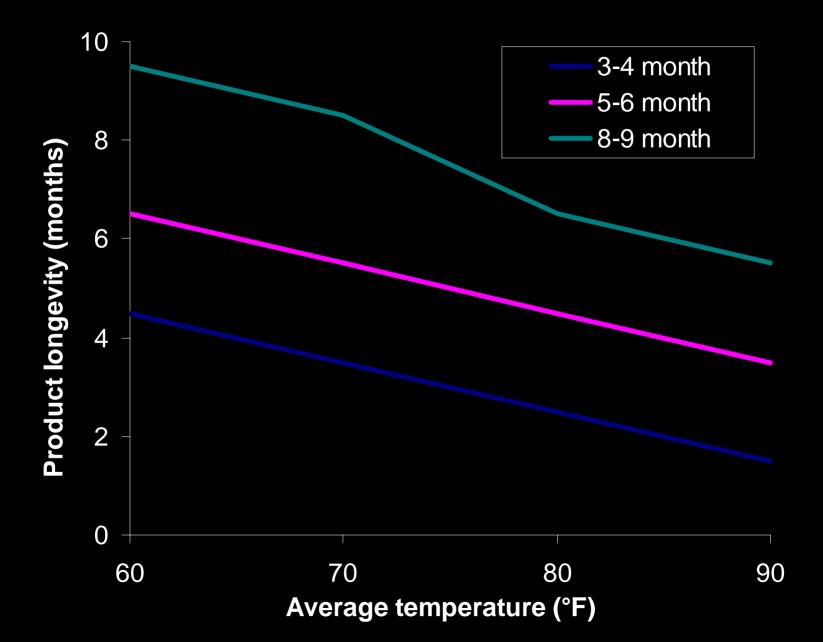
Using Visual Diagnosis

- Notice that many nutrient disorders look alike – media or tissue testing may be required to confirm disorder
- Remember that other factors (pH, nutrient antagonisms) can affect nutrient availability

Fertilizer Adjustments When Growing Plants Cooler

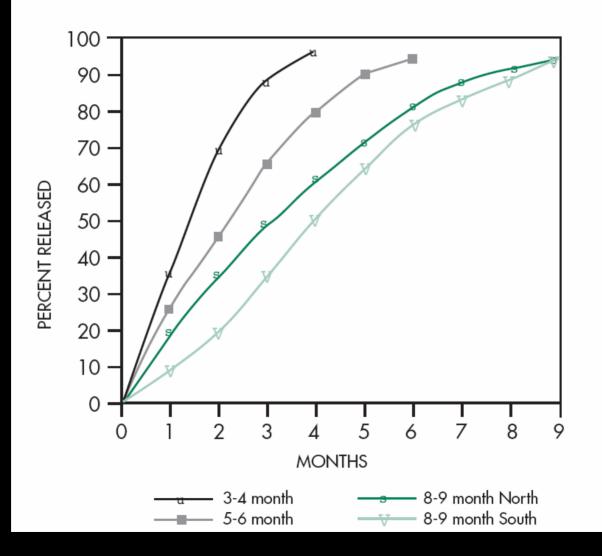
Problems Associated with Growing Cooler

- Phosphorus deficiency below 55 °F
- Inactive roots at low media temperatures
 - Wilting even though media wet
 - Calcium deficiency
- Ammonium toxicity
 - Below 60 °F ammonium not converted to nitrate


What adjustments can you make?

- Young plants are most sensitive
- During propagation/germination keep at 60-65 °F
- Switch to nitrate-based fertilizer
 - -15-0-15 dark weather feed (11% Ca)
 - 15-5-15 Cal-Mag (5% Ca, 2% Mg)

Controlled Release Fertilizers



Temperature controls rate of release

Release Rate by Product

NUTRIENT RELEASE OVER TIME AT 70°F

Source: http://www.scottsprohort.com/_documents/tech_sheets/H5124OsmocotePlus.pdf

CRF Application Rates – General Guidelines

- Low (3-4 lbs/cubic yard)
 - salt sensitive, tender plants
 - when soil is used in potting mix
 - if used in combination with a liquid feed program
 - if minimal leaching takes place

CRF Application Rates – General Guidelines

- Medium (5-6 lbs per cubic yard)
 - More vigorous species and heavy feeders (trailing petunias)
 - When there is frequent leaching

Combination Programs

- When to combine Controlled Release Fertilizers and Water Soluble Fertilizers (WSF)?
- Simplify the fertilization program
- CRF can provide a base feed with a lower leaching potential
- CRF continues after plants leave the greenhouse ideal for hanging baskets

Many consumers forget to fertilize containers and hanging baskets after they bring the product home...

Chrysanthemum CRF/WSF Experiment

Cultivar 'Coparo'

Osmocote Plus 8-9 Month

Source: Mark Bridgen

Pour Thru

- Simple technique for measuring pH and EC
- Nondestructive
- Use on each important crop Sample periodically (ideally every 1-2 weeks)
- Take 5 samples per crop each time and average this

For more information and for crop guidelines see: http://www.pourthruinfo.com from NCSU

	Crop Zonal Geraniums Starting Date (week 0) <u>Feb. 15</u>						Target pH Range <u>6.0-6</u> .6				PourThru pH Chart			
							Upper pH Decision Range_6.6				(10 Weeks)			
pН	Ending Date	e				LowerpH	I Decisio	on Range	6.2					
8.0	· · · ·		-											
7.8			+	 		+	+	+-	!	+		+ +		
7.6		!	·	L		Act	tion	take	en':					
7.4		!	÷			·	tab.							
7.2	·		!			· ÷ · ·:	· ÷ = = = :		iore			<u>.</u>		
7.0			i			/_aci	dic-f	erti	lizer					
6.8			į			+	+	+-		i i	.			
6.6				L		I I I I								
6.4	L						1	1			<u>.</u>			
6.2			<u>+</u>							!!				
6.0			¦											
5.8								<u>-</u>		ii				
5.6			1			i i Ll	i i	I		i i 1L				
5.4			1					1	1					
5.2						· · · · · · · · · · · · · · · · · · ·				1				
5.2			!					+-						
			:											
4.8						I I	1 1	1	1	I I	1	1		
4.6							i			1				
4.4								- -		T -				
4.2			<u>.</u>		-+	+	+ -	+-		4 ! !				
4.0		1	-						_					
	0 1		2	3	4	5 Week	6)	7	8		9	10	

General Pour Thru Guidelines for Nursery Crops

Crop	pН	EC
Sensitive plants liquid feed	5.2 - 6.2	0.5 – 0.75
General liquid feed	5.2 - 6.2	0.75 – 1.5
General Controlled Release	5.2-6.2	0.2 – 1.0

Source: http://pubs.caes.uga.edu/caespubs/horticulture/solublesalts.html

Neil Mattson nsm47@cornell.edu (607) 273-0184 http://www.greenhouse.cornell.edu