
Crop Schedules with Less Heat

Neil Mattson

Assistant Professor, Floriculture Department of Horticulture, Cornell University nsm47@cornell.edu

The Problem: Rising Energy Costs

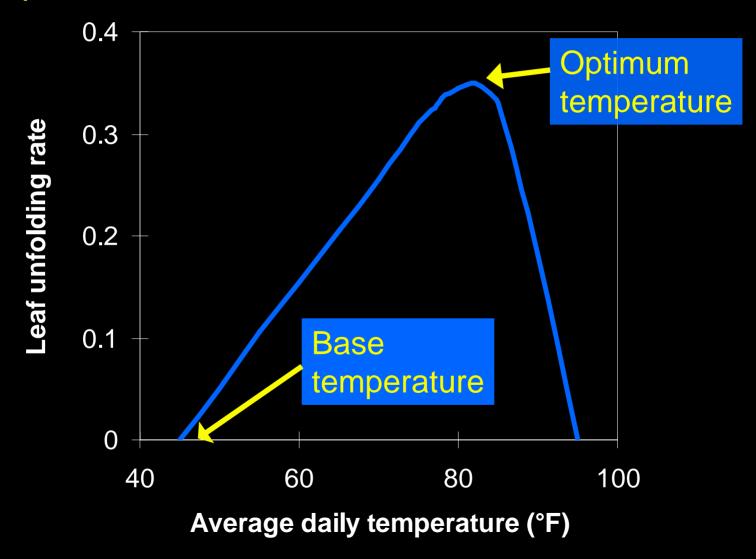
Source: U.S. Energy Information Administration

U.S. average fuel expenditures are expected to be higher for all fuels this winter

	Average Household Expenditures Percent Change from Last Winter		
Fuel	Base Case	lf 10% Warmer Than Forecast	If 10% Colder Than Forecast
Natural Gas	9.5	-1.7	20.3
Heating Oil	21.8	9.8	31.6
Propane	16.3	4.3	27.7
Electricity	3.9	-1.3	7.2
Average Expenditures	9.8	0.1	18.4

Winter = October 1 through March 31.

Expenditures are based on typical per household consumption adjusted for weather. Warmer and colder cases represent 10-percent decrease or 10-percent increase in heating degree-days, respectively. Source: U.S. Energy Information Administration


Outline

- Can we grow plants with less heat?
- What drives plant growth?
- Growing cooler means growing longer
- Crop schedules
- Saving fuel by growing your crops more efficiently
- Saving fuel by looking at greenhouse heat losses

What Drives the Rate of Plant Development?

Temperature

61°

24 75°

54°

2n 68°

Photo: Neil Mattson, 2001

EFFECT OF TEMPERATURE ON Flowering Day 83 Pansy Colossus Yellow Blotch

54°

12

20 68° **1e** 61°

75°

Photo: Neil Mattson, 2001

Average Daily Temperature is Important

- Day temp: 80 °F for 12 hours
- Night temp: 50 °F for 12 hours
- Average daily temperature: 65 °F
- Day temp: 68 °F for 8 hours
- Night temp: 60 °F for 16 hours

Average daily temperature: 63 °F

(68×8)+ (60×16) = 1504 1504 / 24 = 62.7

Growing cooler means growing longer

Cultivar	Days from germination till flowering at average daily temperature of:			Delay in flowering if 24-hour temp is	
	54 °F	61 °F	68 °F	75 °F	reduced 1 °F (days)
Impatiens 'Super Elfin Lipstick'	<u>-</u>	72	<u> </u>	47	1.8
Petunia 'Avalanche Pink'	88	74	47	39	2.5
Petunia 'Dreams Rose'	84	67	46	37	2.3
Petunia 'Wave Purple'	112	88	57	45	3.3
Pansy 'Colossus Yellow Blotch'	95	82	63	58	1.9
Pansy 'Crystal Bowl Supreme Yellow'	72	63	51	46	1.3
Pansy 'Delta Pure White'	88	71	61	53	1.6
Pansy 'Sorbet Blackberry Cream'	68	60	50	45	1.1

Source: Mattson and Erwin, 2002. Acta Horticulturae. 624:191-197.

Plants categorized by their base temperature (the temperature at or below which crops stop developing). Plants with a base temperature of 39 °F or lower can be called "cold-tolerant" crops, and those with a base temperature of 46 °F or higher can be called "cold sensitive crops". Information based on research at Michigan State University and published research-based articles.

Plants with a low	Plants with a moderate	Plants with a high base
base temperature	base temperature (40-	temperature (46 °F or
(39 °F or lower)	45 °F)	higher)
Ageratum	Calibrachoa	African violet
Alyssum	Coreopsis	Angelonia
Campanula	Dahlia	Banana
Cineraria	Impatiens (seed)	Begonia (fibrous)
Diascia	Salvia	Blue salvia
Easter lily		Caladium
Gaillardia		Celosia
Leucanthemum		Gazania
Marigold (French)		Hibiscus
Nemesia		New Guinea impatiens
Petunia		Pepper
Rudbeckia		Phalaenopsis orchid
Scabiosa		Poinsettia
Snapdragon		Purple fountain grass
Thanksgiving cactus		Rose
Viola		Vinca

Source: Erik Runkle, OFA Bulletin, November/December 2006

Temperature and Energy Costs

- "Rule of thumb" a decrease in greenhouse temperature of 1 °F decreases heating costs by about 3%
- Growers wish to save energy by decreasing greenhouse temperatures
- Will this result in any cost savings?

Relative heating cost: Petunia vs. Pansy

	Temperature	
	60	68
Relative heating per day	0.76	1

Petunia 'Purple Wave'

- Days to flower at 68 °F: 57 days
 - Relative heating cost: 57 x 1 = 57
- Days to flower at 60 °F: 85 days
 - Relative heating cost: 85 x 0.76 = 65

Pansy 'Sorbet Blackberry Cream'

- Days to flower at 68 °F: 50 days
 - Relative heating cost: 50 x 1 = 50
- Days to flower at 60 °F: 59 days
 - Relative heating cost: 59 x 0.76 = 45

Fuel cost to heat crops at different temps

Crop	April 1 Finish			
	57 °F	63 °F	68 °F	73 °F
Celosia	\$6,035	\$3,486	\$3,158	\$3,134
Impatiens	\$2,411	\$2,156	\$2,050	\$2,144
Salvia	\$2,930	\$2,592	\$2,446	\$2,381

10,000 square foot greenhouse in Grand Rapids, Michigan Source: Erik Runkle, GMPro, January 2007

Fuel cost to heat crops at different temps

Crop	May 15 Finish			
	57 °F	63 °F	68 °F	73 °F
Celosia	\$3,266	\$1,667	\$1,654	\$1,742
Impatiens	\$981	\$1007	\$1008	\$1078
Salvia	\$1,236	\$1,241	\$1,243	\$1,262

10,000 square foot greenhouse in Grand Rapids, Michigan Source: Erik Runkle, GMPro, January 2007

Temperature tips

- Never reduce temperatures during the germination stage (keep at 72°-76° F)
- Cooler temperatures can promote diseases
 such as Damping off (*Pythium*)
- Lower night temperatures cause many bedding plants to stretch
- Lower temperatures improves the quality of many cold-tolerant plants (example: Geranium)

More temperature tips

- Keep plants off the ground (at least by 2 inches)
- Take advantage of day time heat
 - Let temperatures get up to 80 during the day
 - Change night temperature accordingly
- House within a house propagation structure (poly-tent with heated mats for root zone heat)

What affects the time required to produce a crop?

Weeks to finish from seed (at °68 F)

10 weeks
12
13
15
16
18

What affects the time required to produce a crop?

- Type of plant material
- Temperature
- Light (intensity and daylength)
- Finished Container size
- Size of starter material

What affects the time required to produce a crop?

- Type of plant material
- Temperature
- Light (intensity and daylength)
- Finished Container size
- Size of starter material

Light intensity effects time to flower

Pansy grown for 3 weeks under different lamps

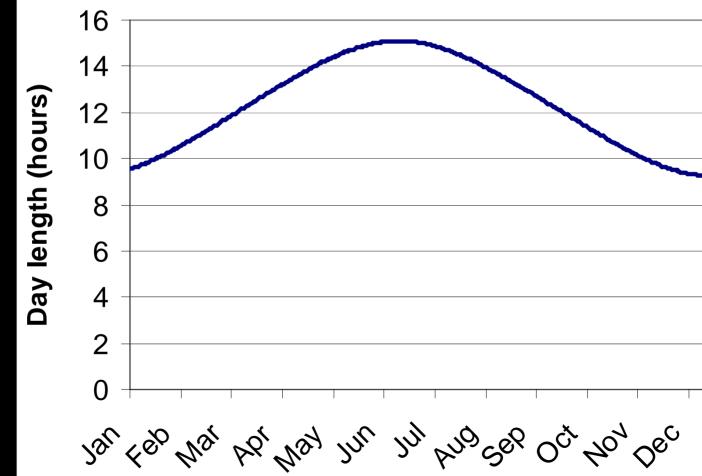

Increasing light intensity

Photo: Neil Mattson, 2002

Daylength effects time to flower

Photoperiod = number of hours of light in one day

What affects the time required to produce a crop?

Weeks to finish from seed (Wave petunias at °68 F)

Finished container sizeFlat10-12 weeks4-inch pot12-14 weeks10-inch container14-16 weeks

What affects the time required to produce a crop?

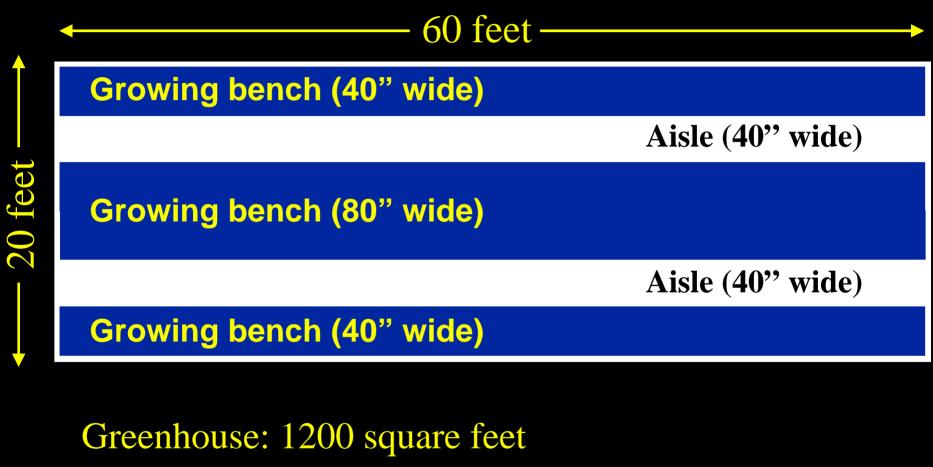
Using larger plugs means heating for less days

Production times for Calibrachoa in 12-inch hanging baskets (72 °F day/67 °F night temperature)

Liner size	Weeks as liner	Weeks in basket	Total production time
105-count	4	8	12 weeks
50-count	6	6	12 weeks
18-count	8	4	12 weeks

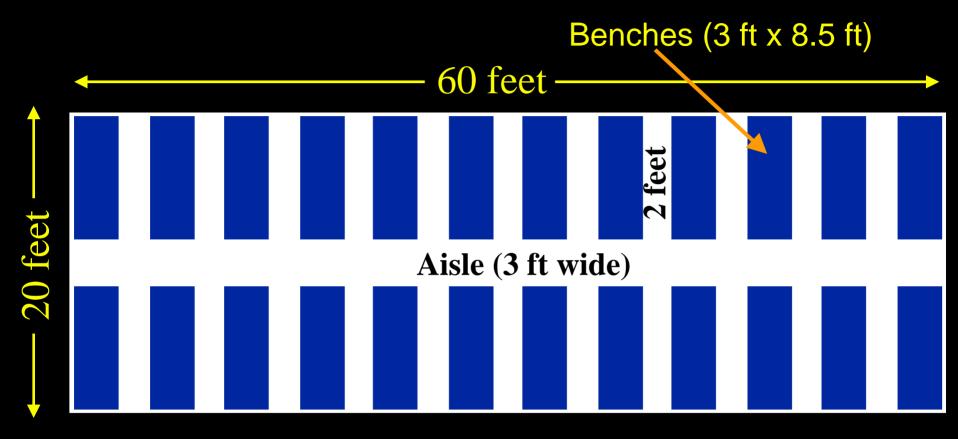
Source: Paul Fisher, Greenhouse Grower, September 2006

Saving fuel by growing your plants more efficiently

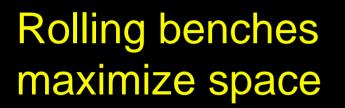

Start heating your greenhouse as late as possible in the spring

New York State Heating Degree Days		
Month Heating degree days		
December	1113	
January	1296	
February	1131	
March	959	
April	579	
May	258	

 Use as much space as possible for growing plants


Space efficiency longitudinal bench arrangement

Space efficiency longitudinal bench arrangement



Growing space: 800 square feet Space efficiency: 67%

Space efficiency - benches across GH width

Greenhouse: 1200 square feet Growing space: 612 square feet Space efficiency: 50%

 Use hanging baskets (but don't reduce light too much)

 Only open up a greenhouse when it can be filled

Once a greenhouse is open you have to heat it whether or not it is full of plants

 If you have more than one greenhouse grouping plants according to their temperature needs

Cooler house for cold tolerant plants

Warmer house for cold sensitive plants

Using a warm house and a cooler house

Turn 1: Cold tolerant crops ready for May 1

- Buy in plugs and transplant Feb 15-28
- Start seed for turn 2 plugs on Feb 15
- Heat from Feb 15 to April 1
- Move to a poly-house with minimal heat on April 1

Turn 2: Heat loving crops for May 15-30

- Transplant turn 2 plugs April 1
- Heat from April 1 till sales

390 plugs transplanted in 36-cell flats

Space Efficiency in the Greenhouse

Multiple crop turns in the same greenhouse

Turn 1: Cold tolerant crops ready for May 1

- Buy in plugs and transplant March 15
- Start vegetable seedlings for turn 2 on March 15
- Heat from March 15 May 1

Turn 2: Vegetable transplants ready for June 1

- Transplant vegetable seedlings May 1
- Heat as needed

390 plugs transplanted in 36-cell flats

What does a basic schedule look like?

You will need to know:

- Greenhouse growing space available
- Temperature targets for the greenhouse

For each variety

- □ Time required to finish (from seed or plug)
- Amount you wish to produce (space required in greenhouse
- □ Target sales date

Production schedule example

20 x 60 foot greenhouse
Holds 576 flats (or 1728 4" pots)
Holds 120 hanging baskets (above aisles)

Average daily temperature 65 °F

Production schedule example

Seed→Plug

7 weeks

7 weeks

8 weeks

Finish by May 13

- 144 flats
 - Petunia
 - Pansy
 - Dusty Miller
- 216 4-inch pots
 - Geranium7 weeks
 - Lobelia 7 weeks
- 60 hanging baskets
 - Petunia7 weeks
 - Impatiens7 weeks

- Transplant→Finish 4 weeks 5 weeks 4 weeks
 - 9 weeks9 weeks
 - 8 weeks 7 weeks

Production Schedule Example

Greenhouse #1 - average daily temperature (65 °F)						
	Seed	Transplant	Finish	Container	Number	
Crop	date	date	date	type	containers	
Petunia	Week 9	Week 16	Week 20	48-cell flat	144	
Pansy	Week 8	Week 15	Week 20	48-cell flat	144	
Dusty Miller	Week 8	Week 16	Week 20	48-cell flat	144	
Geranium	Week 4	Week 11	Week 20	4-inch pot	216	
Lobelia	Week 5	Week 12	Week 20	4-inch pot	216	
Petunia	Week 5	Week 12	Week 20	Hanging	60	
Impatiens	Week 6	Week 13	Week 20	Hanging	60	
Space available in the greenhouse						
Flats (20"x10")						
4" pots						
Hanging baskets						

Greenhouse 1

(20' x 60')800 feet of bench space = 576 flatsHanging baskets = 120 (2 rows per aisle at 2 ft/basket)

Production Schedule Example

Mar-11	Mar-18	Mar-25	Apr-1	Apr-8	Apr-15	Apr-22	Apr-29	May-6	May-13
Week 11	Week 12	Week 13	Week 14	Week 15	Week 16	Week 17	Week 18	Week 19	Week 20
					144 flats				
				144 flats					
					144 flats				
216 pots									
	216 pots								
	60 basket								
		60 basket							
Space rem	naining								
Flats	432	432	432	288	0	0	0	0	0
Baskets	60	0	0	0	0	0	0	0	0

Saving fuel by stopping greenhouse heat losses

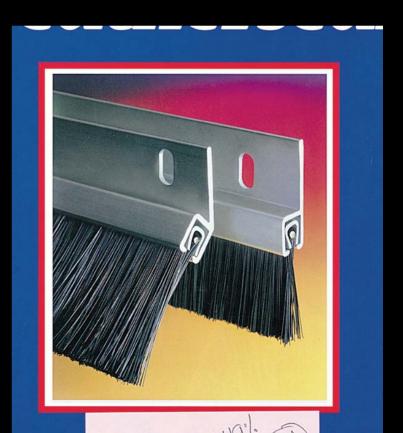
Choosing your greenhouse covering (Glazing)

 Insulation R-value (ft²·°F·hr/Btu) the ability to resist heat flow (loss)

Greenhouse Glazing Materials	R-value
Polyethylene (single layer)	0.9
Polyethylene (double layer)	1.6
Glass (single layer)	0.9
Styrofoam (polystyrene 1" thick)	4.0
Fiberglass insulation (6" thick)	19.0

Windbreaks

A wind 15 mph can double the heat loss from a greenhouse. Windbreaks (fences, trees, buildings) , slow the wind and cut heat losses from the greenhouse Place the windbreak upwind of the greenhouse To avoid shading the greenhouse a windbreak should be 3-4 times the tree height away


Insulation

- Use 1-2" foam insulation board around the perimeter of the greenhouse
- Ideally would be dug in 1-2 feet and can extend up to plant height

Seal your leaks

- Look for gaps especially where the glazing attaches to the foundation, side walls, and end walls
- Weatherstrip doors

In Summary...

- Temperature drives plant growth
- Growing cooler means growing longer
- We have many tools to adjust crop production time (schedules)
- Scheduling can improve efficiency and save on heat
- Keep your greenhouse structure efficient to save on heat

Good luck this spring!

Neil Mattson nsm47@cornell.edu Phone: (607) 255-0621