Don't Get Burned: Managing salts in greenhouse production

Presented at:

Neil Mattson

Assistant Professor and Floriculture Extension Specialist New England Greenhouse Conference

Worcester, MA

November 6, 2008

Cornell University Department of Horticulture

Outline

- Where do salts come from?
- General salt stress
 - Symptoms
 - Cultural Practices that cause High Salts
 - Sensitive Crops
 - Guidelines and Management Options
- Managing specific salt ions
 Na, CI, B, (H)CO₃, NH₄, F
- Nutrient Antagonisms

What are salts?

Compounds that dissolve in water →

ANIONS (-)	CATIONS (+)
Chloride (CI)	Ammonium (NH ₄)
Nitrate (NO ₃ -)	Calcium (Ca)
Sulfate (SO ₄ -)	Iron (Fe)
	Magnesium (Mg)
	Sodium (Na)
	Potassium (K)

How are salts measured?

- Electrical conductivity (EC)
 - units: 1 dS/m = 1 mS/cm = 1 mhos/cm = 1000 μ S/cm
 - old units: 1 mhos
 - luckily, 1 mhos = 1 Siemen (S)
- PPM
 - conversion depends on the specific salts you are using
 - average of all salts: 670 ppm \approx 1 dS/m
- moles/milliequivalents (SI units)
 - ion specific conversion
 - (40 ppm Ca = 1 mM = 2 meq)

Where do salts come from?

Container media, example ECs (these vary by source)

Substrate EC (dS/m)

Compost (Dairy)	7-20
Peat	1.1
Sand	0.2
Soil (Mardin)	1.3
Vermicompost	1.3
Vermiculite	0.1

Where do salts come from?

Water source

 salt deposits , limestone, sea-water incursion, road salt Target: 0.2-0.75 dS/m Acceptable: 0-1.5 dS/m

Massachusetts study of several greenhoues water sources (Cox, Lopes, Smith)

	Municipal	Well (dS/m)
Min	0.05	0.10
Avg	0.39	0.52
Max	3.14	7.15

Where do salts come from?

Added fertilizer

Co	oncentrat (ppm)	ion	Injector Ratios*					Electrical Conductivity (E.C.)**
Ν	Ca	Mg	1:15	1:100	1:128	1:200	1:300	mmhos/cm
25	8.3	3.3	0.34	2.25	2.88	4.50	6.75	0.17
50	16.7	6.7	0.68	4.50	5.76	9.00	13.50	0.33
75	25	10.0	1.00	6.75	8.64	13.50	20.25	0.50
100	33.3	13.3	1.35	9.00	11.52	18.00	27.00	0.66
150	50	20.0	2.03	13.50	17.28	27.00	40.50	0.99
200	66.7	26.7	2.70	18.00	23.04	36.00	***	1.32
300	100	40.0	4.05	27.00	34.56	***	***	1.98
400	133.3	53.4	5.40	36.00	46.08	***	***	2.64

• Example from 15-5-15 Cal Mag fertilizer:

 when applied at 200 ppm N, the water will contain an additional 1.32 dS/m of salinity

Salt Stress

- Osmotic effects
 - loss of osmotic gradient for water absorption
 - \rightarrow wilting (even though substrate is moist)
 - If stress is prolonged may see reduced growth, smaller leaf area, shorter plants (may or may not see wilting)
- Toxic concentrations of ions
 - excess absorption of Na, CI
 - excess absorption of micronutrients (B, Mn, Fe, F)
- (Bi)carbonate
 - high pH
 - precipitation of Ca/Mg increasing sodicity
- Nutrient antagonisms
 - an excess of one nutrient limits absorption of another

Outline

- Where do salts come from?
- General salt stress
 - Symptoms
 - Cultural Practices that cause High Salts
 - Sensitive Crops
 - Guidelines and Management Options
- Managing specific salt ions
 Na, CI, B, (H)CO₃, NH₄, F
- Nutrient Antagonisms

General high salt levels

- Osmotic stress
 - Wilting

Note accumulated salts on the surface

General high salt levels

- Osmotic stress
 - Smaller leaf and flower size

Control

+3500 ppm Cl +2300 ppm Na

Osmotic Stress - Shorter Stems

Symptoms of Excess Soluble Salts

marginal chlorosis → necrosis of older leaves

Symptoms of Excess Soluble Salts

- Death of root tips
- Increased Pythium susceptibility

Snapdragon subirrigated with a complete fertilizer Note poor root growth in 500 ppm treatment

Liquid feed at varying concentrations

Cultural Practices that Cause High Salts Effect of irrigation method and fertilizer concentration Impatiens 'Super Elfin Mix'

Cultural Practices that Cause High Salts Fertility and Substrate EC Affects Growth Impatiens 'Super Elfin Mix'

Fertility and Substrate EC Affects Growth Impatiens 'Super Elfin Mix'

• Tomato 'Sweet 100' grown for 4 weeks at different fertility levels, was tolerant of salts to 500 ppm N

Source: Neil Mattson

Fertilizer N concentration (ppm)

- High Salts from Over Fertilization, caused by
 - overwatering
 - poor drainage
 - root rots

High EC from over watering

Photos: Douglas Cox, UMass

High Salts from CRF

- Use media within 1 week after incorporating CRFs
- Carefully measure rate during mixing

 difficult to correct high salts

Photo: Peter Davies, Cornell University

Sensitive Bedding/Potted Plants

- Calceolaria
- Celosia
- Fibrous begonia
- Impatiens
- Pansy
- Zinnia

Herbaceous Annuals

- Agastache cana
- Echinacea purpurea
- Leucanthemum x superbum 'Alaska'
- Sedum Acre

EC Guidelines

Table 3. EC interpretation values (mS/cm) for various extraction methods ¹ .					
1:5	1:2	SME	PourThru ²	Indication	
0 to 0.11	0 to 0.25	0 to 0.75	0 to 1.0	Very Low. Nutrient levels may not be sufficient to sustain rapid growth.	
0.12 to 0.35	0.26 to 0.75	0.76 to 2.0	1.0 to 2.6	Low. Suitable for seedlings, bedding plants and salt sensitive plants.	
0.36 to 0.65	0.76 to 1.25	2.0 to 3.5	2.6 to 4.6	Normal. Standard root zone range for most established plants. Upper range for salt sensitive plants.	
0.66 to 0.89	1.26 to 1.75	3.5 to 5.0	4.6 to 6.5	High. Reduced vigor and growth may result, particularly during hot weather.	
0.9 to 1.10	1.76 to 2.25	5.0 to 6.0	6.6 to 7.8	Very High. May result in salt injury due to reduced water uptake. Reduced growth rates likely. Symptoms include marginal leaf burn and wilting.	
>1.1	>2.25	>6.0	>7.8	Extreme. Most crops will suffer salt injury at these levels. Immediate leaching required.	
¹ Adapted from: On-site testing of growing media and irrigation water. 1996. British Columbia Ministry of Agriculture. ² Due to the variability of the PourThru technique results, growers should always compare their results to the SME method to establish acceptable ranges.					

Source: Todd Cavins et al., NCSU, http://www.pourthruinfo.com/

EC Guidelines

Table 2. The relative nutrient requirements of actively growing greenhouse crops, with EC ranges for both the SME and PourThru methods. Use this classification system and the examples provided in Figure 3 for the PourThru method to determine the suggested target EC ranges for the entire crop production cycle.

No Additional Fertilizer Required		Medium (SME EC of 1.5 to 3.0 mS/cm) (PourThru EC of 2.0 to 3.5 mS/cm)		
Amaryllis Crocus <i>Narcissus</i>		Alstroemeria Alyssum Bougainvillea Calendula Campanula	Kalanchoe Larkspur Lily, Asiatic & Oriental Lily, Easter Lobelia	
Light (SME EC of 0.76 to 2.0 mS/cm) (PourThru EC of 1.0 to 2.6 mS/cm)		Cactus, Christmas Carnation Cauliflower	Morning Glory Onion Ornamental Kale	
Aconitum African Violet Ageratum Anemone Anigozanthos Asclepias Aster Astilbe Azalea Balsam Begonia (fibrous) Begonia (Hiemalis) Begonia (Rex) Bagonia (Tuberous)	Coleus Cosmos Cuttings (during rooting) Cyclamen Freesia Geranium (seed) Gerbera Gloxinia Impatiens Marigold New Guinea Impatiens Orchids Pansy Plugg	Centaurea Cleome Clerodendrum <i>Crossandra</i> Dahlia Dianthus Dusty Miller Exacum Geranium (cutting) Hibiscus Hydrangea Jerusalem Cherry	Ornamental Pepper Oxalis Pepper Petunia Phlox <i>Platycodon</i> Portulaca Ranunculus Rose Sunflower (potted) Tomato Verbena	
Caladium Primula Calceolaria Salvia Calla Lily Streptocarpus Celosia Snapdragon Cineraria Zinnia		H (SME EC of 2 (Pourthru EC o Chrysanthemum Poinsettia	eavy 2.0 to 3.5 mS/cm) f 2.6 to 4.6 mS/cm)	

Source: Todd Cavins et al., NCSU, http://www.pourthruinfo.com/

Monitoring EC – Pour Thru

- Example for Poinsettia
 - Establishing 1.9 2.6 dS/m
 - Active Growth 2.8 4.1 dS/m
 - Finishing

1.9 – 2.7 dS/m

ation Key	Target Range (Optimal pH or EC range.)	Management Decision Range (if sampling results determine that the pH or EC levels are outside of the target range, then take corrective steps to move	Danger Range (If sampling results determine that the pH or EC levels are outside of the target range, then take IMMEDIATE corrective steps to
	(opening) of the condition	pH or EC back into the target range.)	move pH or EC back into the target range.)

Source: Todd Cavins et al., NCSU, http://www.pourthruinfo.com/

Short Term Management Options

Leaching

Example: Clear water application 1x / week vs. Control (constant liquid feed)

Long Term Management Options

- Decrease fertility
- Periodic Leach
- A look at fertilizer sources and salt levels
 → compare labels
- Switch water source?
- (Ebb and flow difficult using poor quality water for sensitive crops)

EC Management Using Leaching

Recommended leaching fraction for container media

EC of Applied Water	Leaching Fraction
> 2 dS/m	30%
> 1.5 dS/m	20%
< 1 dS/m	10%

Young Plants are More Sensitive to Salts

Fertilizer levels by plugs stage

Stage 250-75 ppm NStage 3100-150 ppm NStage 4100-150 ppm N- mostly Nitrate based N

1-2X/week1-2X/week1-2X/week

Pour Thru EC: 1.0-2.6

Souce: Styer and Koranski, Plug and Transplant Production, 1997

Young Plants are More Sensitive to Salts

Low Fertility Plugs

Stage 2< 1.5 dS/m (PourThru)</th>Stage 31.5-2.5 dS/m (PourThru)

CelosiaEggplantF. Kale/CabbageLettucePansyPepperSnapdragonTomato

Souce: Styer and Koranski, Plug and Transplant Production, 1997

Young Plants are More Sensitive to Salts

Medium Fertility Plugs

Stage 22-2.5 dS/m (PourThru)Stage 32.5-3 dS/m (PourThru)

AgeratumBrowalliaCyclamenDianthusDusty millerImpatiensLisianthusMarigoldPrimulaSalviaVerbenaVincaSouce: Styer and Koranski, Plug and Transplant Production, 1997

Water Quality Guidelines for Plug Production

pН	5.5-6.5
Alkalinity	60-80 ppm CaCO ₃
EC	< 0.75 dS/m
Sodium	< 40 ppm
Chloride	< 70 ppm
Sulfates	24-240 ppm OK
Boron	< 0.5 ppm
Fluoride	< 1.0 ppm
Iron	< 5.0 ppm

Adapted from: Styer and Koranski, Plug and Transplant Production, 1997

Outline

- Where do salts come from?
- General salt stress
 - Symptoms
 - Cultural Practices that cause High Salts
 - Sensitive Crops
 - Guidelines and Management Options
- Managing specific salt ions – Na, Cl, B, (H)CO₃, NH₄, F
- Nutrient Antagonisms

Sodium / Chloride Toxicity

Symptoms

- Leaf margin/tip chlorosis \rightarrow necrosis
- Old leaves affected first
- CI typically more toxic
- Foliar applied Cl > 100 ppm can also cause burn

Photo: Paul Lopes, UMass

Chloride Sensitive Plants

- Roses
- Camellias
- Azaleas
- Rhododendrons

Management Options Chronic Salt Problems

• The case of high NaCl in water supply

- Be careful of plants drying out
- Blended water, reverse osmosis
- Adding enough Ca, K
- Avoid wetting foliage during irrigation

Boron Toxicity

Symptoms

- Yellowing of leaf tips/margins \rightarrow brown
- Old leaves affected first

Boron Sensitivity

SENSITIVE SPECIES			
Threshold of source water 0.5-1.0 ppm B			
Geranium	Larkspur		
Pansy Rosemary			
Zinnia			

MODERATELY SENSITIVE			
Threshold of source water 1.0-2.0 ppm B			
Calendula Gardenia			
Marigold Poinsettia			

Boron Sensitivity and pH

 Low pH favors Boron toxicity

 High pH favors Boron deficiency

Graph: Bailey et al., NCSU, http://www.floricultureinfo.com/

Boron Deficiency - Symptoms

- Growing point and new leaves affected
- Hard, distorted, mottled upper foliage
- Abortion of growing point
- Proliferation of branches

Photo: Brian Krug, UNH

Boron Deficiency - Causes

- Petunia/Pansy plugs and flats often affected
- Low B in tap water
- High pH
- High Calcium
- Inactive roots
 - waterlogged
 - $-\operatorname{cold}$
 - high humidity

Photo: Brian Krug, UNH

Alkalinity

Alkalinity – the ability of water to neutralize acids

- due to the presence of dissolved alkalis: Ca(HCO₃)₂, NaHCO₃, Mg(HCO₃)₂, CaCO₃
- Do not confuse with "Alkaline" which means pH level greater than 7
- Reported in terms of ppm CaCO₃ (or meq;
 50 ppm = 1 meq CaCO₃)
- Typically varies from 50-500 ppm

What is Optimal Alkalinity?				
	Optimal	Concern		
Plugs	60-100	<40, >120		
Flats/Small Pots	80-120	<40, >140		
Large containers (> 6 inches)	120-180	<60, >200		

Problems with High Alkalinity

- Rapid media pH rise
- Iron/Manganese deficiency
- Ca/Mg can precipate and excacerbate high Na

Problems with Low Alkalinity

- pH of container media will change more rapidly
- Magnesium/Calcium deficiency
- Low pH induced Iron/Manganese Toxicity (photo on right)

Crops Sensitive to High Alkalinity

- Iron-inefficient group (Petunia group)
- require a lower pH (5.4-6.0)
 - Bacopa
 - Calibrachoa
 - Diascia
 - Nemesia
 - Pansy
 - Petunia
 - Snapdragon
 - Vinca

Crops Sensitive to Low Alkalinity

- Iron-efficient group (Geranium group)
- Require a higher pH 6.0-6.6
 - Marigold
 - Seed/Zonal Geraniums
 - New Guinea Impatiens
 - Lisianthus

Iron toxicity

- Typically from low pH in container media
- For water sources with high Iron (>3 ppm)
 - removal through flocculation / aeration

Graph: Bailey et al., NCSU, http://www.floricultureinfo.com/

Correcting High Alkalinity

- 1) Change or blend the water source rainwater, pond water
- 2) Use an acidic fertilizer
- 3) Inject acid into irrigation water
- 4) Ensure Iron is available in the rootzone

Factors using fertilizer to adjust pH

- Fertilizer approach does not work well in dark/cool weather
 - In dark/cool weather plants accumulate ammonium (toxicity)
 - ammonium in the medium does not convert to nitrate (so there is less pH effect)
- Sometimes ammonium will not drop pH due to high lime in container media, or high water alkalinity (>300 ppm)

Acid Injection

Acidification reduces the amount of carbonates and bicarbonates

H⁺ (from acid) + HCO₃⁻ (in water) \rightarrow CO₂ + H₂O

Which Acid to Use?

- Safety
 - Nitric acid is very caustic and has harmful fumes
 - Sulfuric, Phosphoric, Citric relatively safe
- Cost
 - Sulfuric is cheapest, others are 2-4 times more expensive
- Nutrients from Acid
 - Sulfuric provides S
 - Nitric provides N
 - Phosphoric provides P (but can be too much if equilibrating >100 ppm alkalinity

Solubility of Various Iron Forms

Source: Reed, Water, Media, and Nutrition, 1996

Iron Chelate Products

Iron Form	% Iron	Product
Iron EDTA	13%	Sequestrene Fe
		Dissolzine EFe13
Iron DTPA	10-11%	Sequestrene 330
		Sprint 330
		Dissolzine DFe11
Iron EDDHA	6%	Sequesterene 138
		Sprint 138
		Dissolzine QFe6

- Apply drenches at 5 oz/100 gal
- Foliar sprays at 60 ppm Fe (6-8 oz/100 gal)

Phytotoxicity and Foliar Iron Sprays

Wash foliage with clear water soon after applying iron chelate

Ammonium Toxicity

Symptoms: Chlorosis/necrosis of leaf margins and between veins

Thick/leathery leaves Death of root tips

Photos: Cari Peters

Causes of Ammonium Toxicity

- High amount in fertilizer
- Use of immature manure/compost
- Cool/wet soils inhibits conversion of Ammonium → Nitrate
- Low pH (<5.5) inhibits conversion
- and ammonium does not readily leach from most substrates

Crops Sensitive to Ammonium Toxicity

- Coleus
- Cosmos
- Geranium
 (*Pelargonium*)
- Salvia
- Zinnia

Photo: Margery Daughtrey

- Tomato
- Eggplant
- Pepper

Ammonium accumulates when nitrification is inhibited

Solving Ammonium Toxicity

- Maintain Root temps ≥ 60 F
- Use $\leq 40\%$ of Nitrogen ammonium
- Discontinue current fertilizer → switch to nitrate until conditions improve

Ammonium does not readily leach, but in a pinch...

- Top-dress gypsum 1 tablespoon per 6" pot
- water in with clear water
- drench with 50 ppm calcium nitrate after 2 hrs

Fluoride Toxicity

- Symptoms
 - chlorosis of leaf tips/margins, followed by necrosis
 - lower leaves affected first
- Sources
 - municipal waters (>1 ppm F)
 - superphosphate (1600 2600 ppm)
- Susceptible plants:
 - Easter Lily, Gladiolus
 - Many foliage plants that are monocots
- Solutions
 - substitute monocalcium-phosphate
 - maintain higher pH

Outline

- Where do salts come from?
- General salt stress
 - Symptoms
 - Cultural Practices that cause High Salts
 - Sensitive Crops
 - Guidelines and Management Options
- Managing specific salt ions
 Na, CI, B, (H)CO₃, NH₄, F
- Nutrient Antagonisms

Nutrient Antagonisms

 Occurs when one nutrient is present in excess, and limits root absorption of another nutrient

Excessive in Media \rightarrow	Low Tissue Level
NH ₄ , Na, K, Ca, Mg	Na, K, Ca, or Mg
PO ₄	Zn or Fe
Ca	B
CI	NO ₃

Source: Paul Nelson

Nutrient Antagonisms

Ex: Chloride inhibits nitrate uptake in roses

2100 ppm Cl

Source: Massa, Mattson, and Lieth, 2008

Questions?Neil Mattsonnsm47@cornell.eduOnline: http://www.greenhouse.cornell.edu

Please Note – Trade names used in the presentation are for convenience only. No endorsement of products is intended, nor is criticism of unnamed products implied.