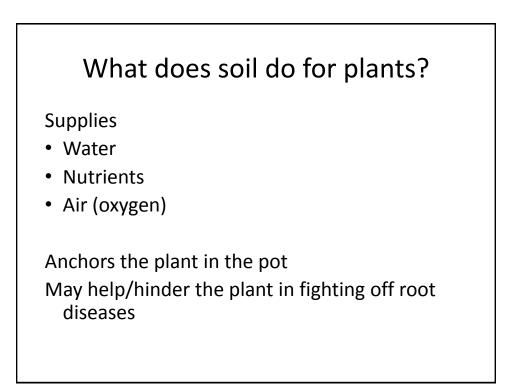
Totally Potted Making the most of your media

Neil Mattson

Asst. Professor and Floriculture Extension Specialist

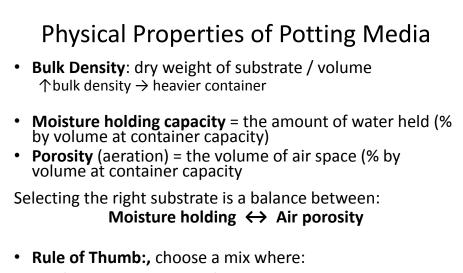
nsm47@cornell.edu



Cornell University Department of Horticulture

Outline

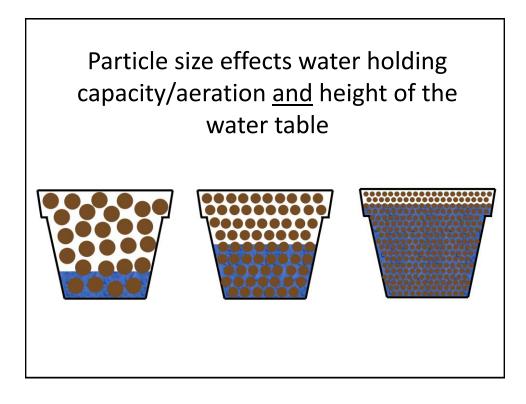
- Properties of media
 - Physical
 - Chemical
 - Biological
- pH/EC testing
- Media components
- Compost considerations

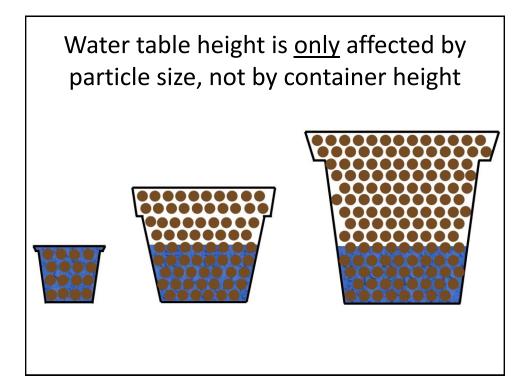


contai	ner media versu	is field soils
Property	Container	Field
Water	Saturation→Wilt in 1-3 days Irrigate daily!	Field Capacity → Wilt in 1-3 weeks Irrigate weekly

conta	iner media versi	us field soils
Property	Container	Field
Temper- ature	50 – 100+ °F in 1 day (120 °F will kill roots)	Fairly constant over the season

Property	Container	Field
рН	1 pH unit change in weeks	1 pH unit change takes several months (ex. liming)

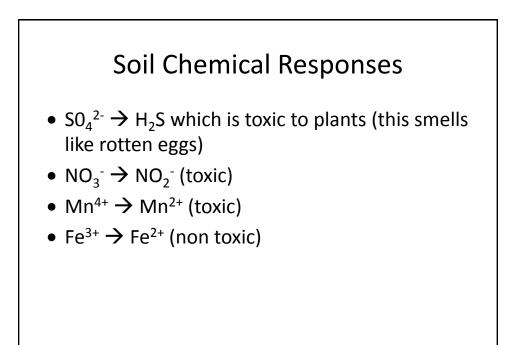


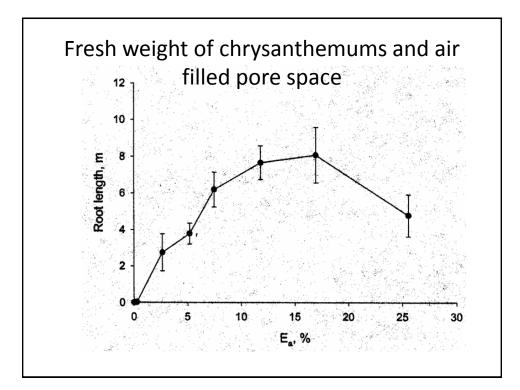

- Total porosity is greater than 50%
- Moisture holding capacity is greater than 40%
- Air porosity is greater than 10%

Aeration and Water Holding affected by particle size and container height

- larger particle size:
 - increased aeration
 - decreased water holding
- smaller particle size:
 - poor aeration
 - increased water holding

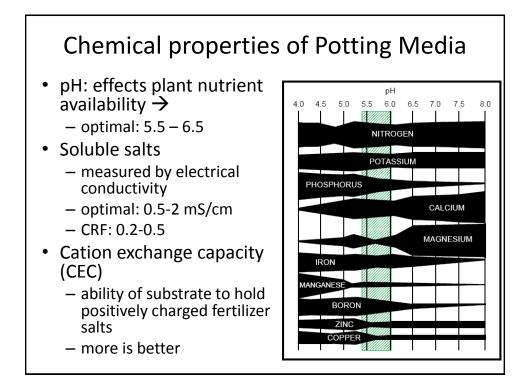
The particle size of most soils is too fine for use in containers




Importance of Aeration (Air Filled Pore Space) and Plant Growth

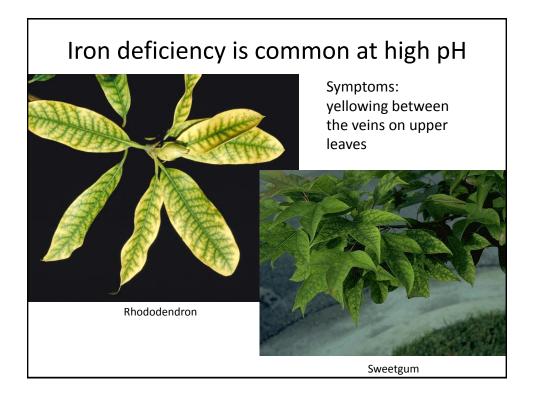
- Oxygen is needed for normal root growth and respiration
- If normal root growth cannot occur the plant will have problems taking up water and nutrients

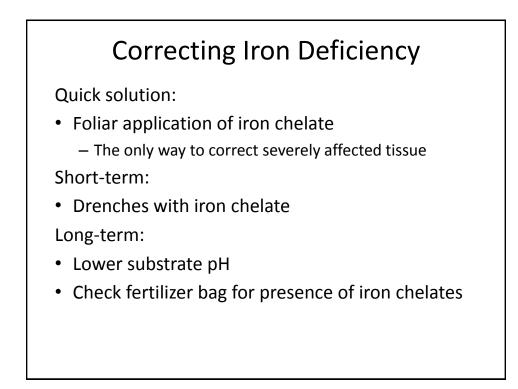
Symptoms of Low Aeration

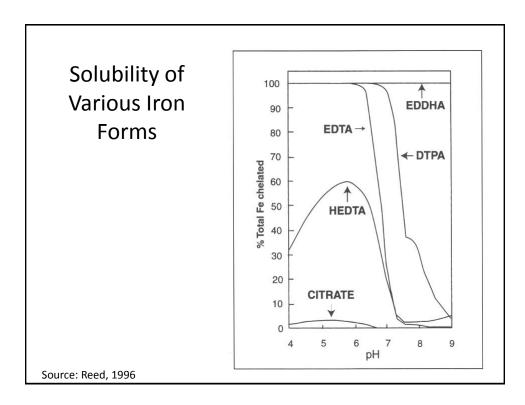

- Mild-moderate stress
 - less vigorous growth
 - smaller leaves
 - dark green or chlorotic leaves
- Severe stress
 - poor root growth/shallow growth (root growth only toward top of container)
 - leaf drop
 - wilting in the early afternoon (can also be caused by high salinity/disease)

Example physical properties

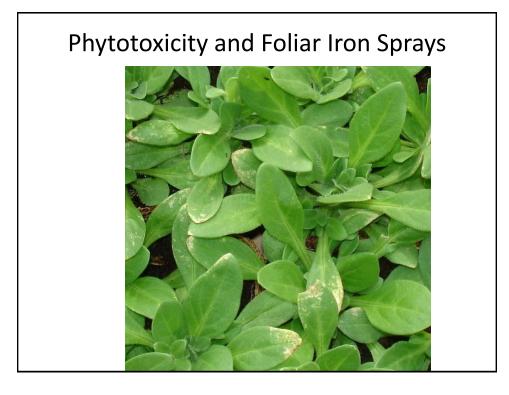
mix or amendment	Total porosity (%)	Water holding capacity (%)	Air-filled porosity (%)
sphagnum peat	94	84	10
peat + perlite (1:1)	93	54	39
peat + vermiculite (1:1)	94	81	13
sand + redwood sawdust + peat (1:1:1)	73	57	16
coir	95	79	16




pH and CEC of potting mix components


Amendment	рН	Cation Exchange Capacity (meq/100 cm ³)
Sphagnum peat moss	3.5-4.2	15
Redwood bark	3.2	6
Ponderosa pine bark	3.6	8
Hypnum peat moss	5.1	32
White fir bark	4.4	16
Fir sawdust	4.0	3
Redwood sawdust	3.8	5
Pine sawdust	4.5	4
Coconut Coir	7.0	20-80

pH and CEC of potting mix components


Amendment	рН	Cation Exchange Capacity (meq/100 cm ³)
Calcined clay	negligible	3-12
Perlite	negligible	0.15
Rockwool	negligible	negligible
Sand	negligible	negligible
Vermiculite	variable	2-3

Commercial Products					
Iron Form	% Iron	Product			
	100/	Sequestrene Fe			
Iron EDTA	13%	Dissolzine EFe13			
		Sequestrene 330			
Iron DTPA	10-11%	Sprint 330			
		Dissolzine DFe11			
		Sequesterene 138			
Iron EDDHA	6%	Sprint 138			
		Dissolzine QFe6			
Apply drenches a	at 5 oz/10	0 gal			
Foliar sprays at 6	60 ppm Fe	(6-8 oz/100 gal)			

Where do salts come from?

• Water source

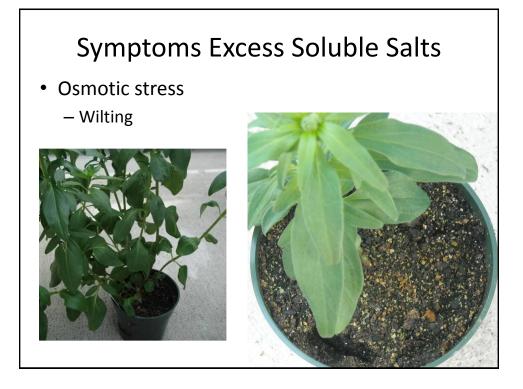
– salt deposits, limestone, sea-water incursion, road salt

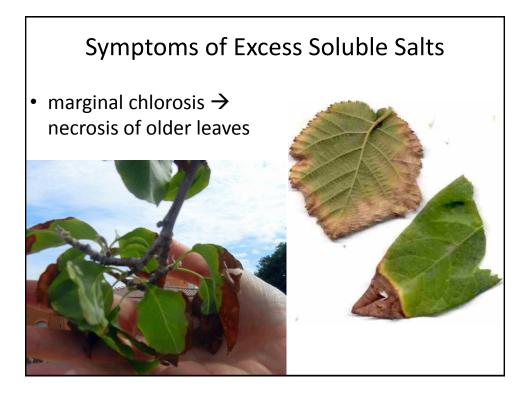
Target: 0.2-0.75 dS/m

Acceptable: 0-1.5 dS/m

Salts in	containe	r media
Substrate	EC (dS/m)]
Compost (Dairy)	7-20	
Peat	1.1	
Sand	0.2	
Field Soils	0.3-1.0	A THE R
	a construction of the second se	
Vermiculite	0.1	

Salts in fertilizer


• Liquid fertilizer...


Co	oncentrat (ppm)	ion	Injector Ratios*				jector Ratios* Electrical Conductivity (E.C.)*	
Ν	Ca	Mg	1:15	1:100	1:128	1:200	1:300	mmhos/cm
25	8.3	3.3	0.34	2.25	2.88	4.50	6.75	0.17
50	16.7	6.7	0.68	4.50	5.76	9.00	13.50	0.33
75	25	10.0	1.00	6.75	8.64	13.50	20.25	0.50
100	33.3	13.3	1.35	9.00	11.52	18.00	27.00	0.66
150	50	20.0	2.03	13.50	17.28	27.00	40.50	0.99
200	66.7	26.7	2.70	18.00	23.04	36.00	***	1.32
300	100	40.0	4.05	27.00	34.56	***	***	1.98
400	133.3	53.4	5.40	36.00	46.08	***	***	2.64

 Controlled Release Fertilizers have much lower EC readings

Using Soluble Salts to Diagnose Nutrient Disorders

- Excess salts mean
 - fertilizer levels exceed plant requirements
 - insufficient leaching during irrigation
 - irrigation water contains a high amount of dissolved elements
- Low salt levels
 - insufficient fertilizer levels
 - excess leaching during irrigation

Symptoms of Excess Soluble Salts

- Death of root tips
- Increased Pythium root rot susceptibility

Symptoms low soluble salts

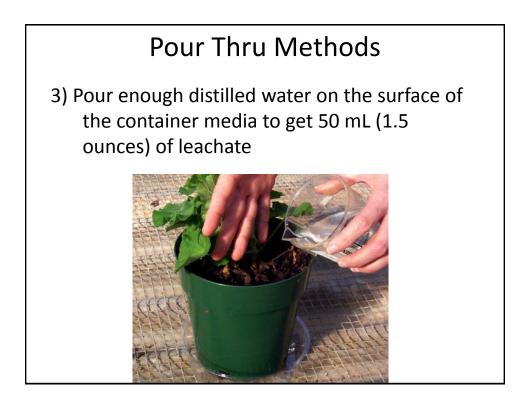
Fertility is too low
 plant growth stunted

Pour Thru method pH/EC monitoring

- Nondestructive
- Use on each important crop
- Sample periodically (ideally every 1-2 weeks)
- Take 5-10 samples per crop each time and average this

Source: North Carolina State University, http://www.pourthruinfo.com

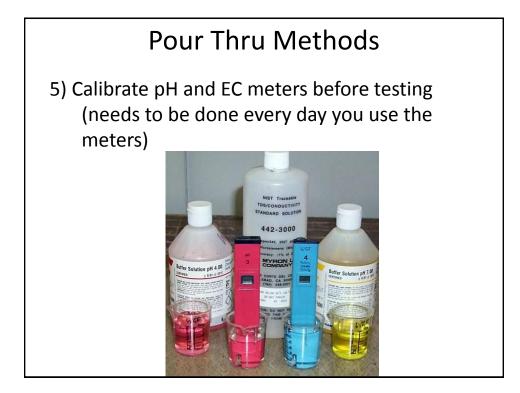
Pour Thru Methods


1) Irrigate your crop one hour before testing

- Containers should be fully saturated
- If fertilization is periodic (ex: weekly), test on the same day of the fertilizing cycle

Pour Thru Methods

2) After container has drained for one hour, place saucer under container



110 W	much water		
Container	Water to Add		
Size	mL	fluid	
		ounces	
4-6 inch	75	2.5	
1 quart	75	2.5	
1 gallon	150	5.0	
3 gallon	360	12.0	

Pour Thru Methods

4) Collect Leachate for pH and EC testing

Or the of samples of s

Media sampling for 1:2 dilution method or sending to lab for analysis

- take slices/cores of media from the area where roots are actively growing
- take samples from 10 representative plants
- pool the samples together
- most labs require 1-2 cups of material
- taking sample from the upper third of the container will overestimate fertility

1:2 dilution method pH/EC monitoring

- air dried media sample
- combine 1 part media and add 2 parts DI water (by volume)
- mix thoroughly
- allow it to stand for 30 minutes
- pour some of sample into a cup

EC guidelines by extraction method

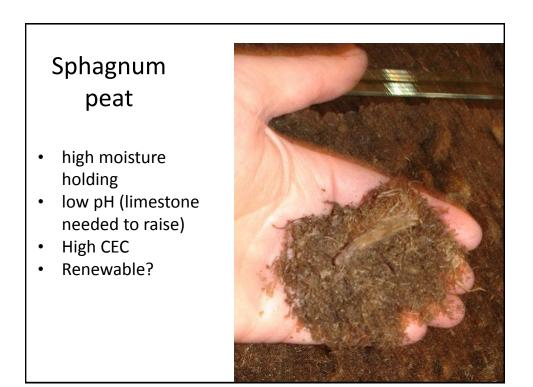
1:5	1:2	SME	PourThru ²	Indication
0 to 0.11	0 to 0.25	0 to 0.75	0 to 1.0	Very Low. Nutrient levels may not be sufficient to sustain rapid growth.
0.12 to 0.35	0.26 to 0.75	0.76 to 2.0	1.0 to 2.6	Low. Suitable for seedlings, bedding plants and salt sensitive plants.
0.36 to 0.65	0.76 to 1.25	2.0 to 3.5	2.6 to 4.6	Normal. Standard root zone range for most established plants. Upper range for salt sensitive plants.
0.66 to 0.89	1.26 to 1.75	3.5 to 5.0	4.6 to 6.5	High. Reduced vigor and growth may result, particularly during hot weather.
0.9 to 1.10	1.76 to 2.25	5.0 to 6.0	6.6 to 7.8	Very High. May result in salt injury due to reduced water uptake. Reduced growth rates likely. Symptoms include marginal leaf burn and wilting.
>1.1	>2.25	>6.0	>7.8	Extreme. Most crops will suffer salt injury at these levels. Immediate leaching required.
	ility of the PourThn			British Columbia Ministry of Agriculture. ays compare their results to the SME method to establish

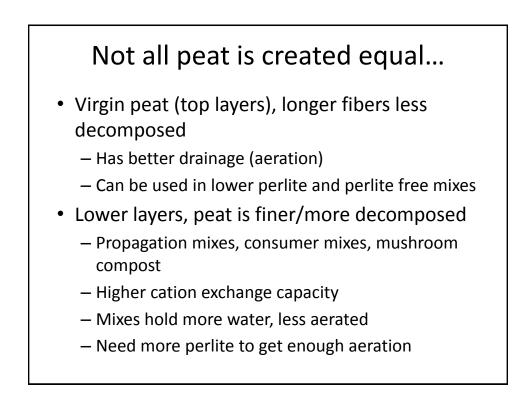
Saturated Media Extract

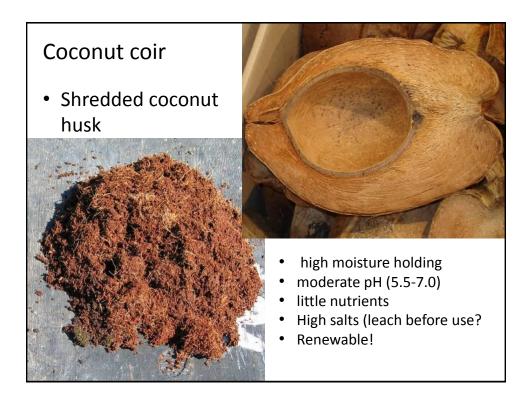
- the most universal method for laboratory testing of container media (not practical for "in-house" measurements)
- DI water is slowly added and stirred to the media sample (≈1 cup media) until a "glistening paste" is formed
- The mixture is allowed to stand for 30-90 minutes
- The filtrate is extracted under suction
- Filtrate analyzed for pH/nutrients of interest etc.

Method	Abbreviation	Units	Example	
millisiemens	mS/cm	EC x 10 ⁻³ /cm	2.25 mS/cm	
millimhos	mmhos/cm	EC x 10 ⁻³ /cm	2.25 mmhos/cm	
A new term for millimhos is millisiemens, which is the metric (SI) unit of expressing electrical conductance. There is no change in value, just terminology.				
		1		
Decisiemens per mete	dS/m r is the common term use m deci- means one-tenth a		1 0	
Decisiemens per mete conductance. The ter 100 times greater than (m) and for mS/cm th therefore when compa	r is the common term use n deci- means one-tenth a milli While expressi e denominator is given in	d in scientific literature and the term milli- mean ng dS/m, the denominato terms per centimeter (cr mS/cm, the zeros cancel	of expressing electrical s one-thousandth, so a deci- is or is given in terms per meter n). One meter contains 100 cm, out mathematically and the	
conductance. The ter 100 times greater than (m) and for mS/cm th therefore when compa	r is the common term use n deci- means one-tenth a milli. While expressi e denominator is given in rring values in dS/m and n	d in scientific literature and the term milli- mean ng dS/m, the denominato terms per centimeter (cr mS/cm, the zeros cancel	of expressing electrical s one-thousandth, so a deci- is r is given in terms per meter n). One meter contains 100 cm, out mathematically and the	
Decisiemens per mete conductance. The ter 100 times greater than (m) and for mS/cm th therefore when compa decimal point appears Some labs prefer to en	r is the common term use n deci- means one-tenth a a milli While expressi- e denominator is given in rring values in dS/m and n at the same place for bot mho x 10 ⁻⁵ /cm	d in scientific literature and the term milli- mean ng dS/m, the denominato terms per centimeter (cr mS/cm, the zeros cancel h units (i.e. 2.25 dS/m = $EC \ge 10^{-5}/cm$ aber (i.e. 225), therefore	of expressing electrical s one-thousandth, so a deci- is or is given in terms per meter n). One meter contains 100 cm, out mathematically and the 2.25 mS/cm). 225 mho x 10 ⁻⁵ /cm the decimal point is shifted two	

- Organically based substrates (peat, compost, bark, soil) may contain several living organisms
- Fungi, microbes, water-molds
 - many of these will be neutral (do not harm plant/roots)
 - some are beneficial, such as mycorhizae that retain nutrients
 - some are harmful: root-rots
- Insects especially fungus gnats
- Weed seeds




- Pro-Mix products contain Mycorise[®] Pro mycorrhizae help retain nutrients, and help roots scavenge water/nutrients
- Some Pro-Mix products contain Subtilex[®] biofungicide. This is a bacteria (Bacillus subtilis) that helps prevent root pathogens, such as damping, off from gaining-hold
- RootShield[®] WP the substrate can be drenched with this, contains a fungus, Trichoderma, which helps protect roots from pathogens
 - Also RootShield granules (last 12 weeks)



Organic media components

- Sphagnum peat moss
- Coconut coir
- Pine and hardwood bark
- Rice hulls
- Leaf and yard waste composts
- Animal waste composts

Pine and hardwood bark

- partially decomposed/composted is best
 - When used fresh can decompose rapidly
 - Microorganisms compete with plants for soluble nitrogen (this is called "nitrogen draft" – a rapid depletion of media nitrogen)
 - Composting takes time and space so some growers do not do this, need to add nitrogen
- maintains porosity for a long period of time
- cheap often used in the nursery industry because of the large containers used
- overtime media pH may decrease

Nitrogen Draft				
Large N draft	Intermediate N draft	Low N draft		
Hardwoods	Pine sawdust	Peat		
Ponderosa pine bark	Douglas fir bark	Redwood bark		
Jeffrey pine bark	Red fir bark	Sugar pine bark		
		Incense cedar bark		

If using fresh wood products, to account for N draft

- Add 4 pounds nitrogen per cu. yard for large N draft
- 2 pounds nitrogen for intermediate draft materials


- Historically pine bark 3/8-1/2 inch size has been preferred
- Whole tree (WT) is a new development
 - Composed of the entire aboveground parts of a pine tree including wood, bark, needles, and branches
 - Chipped and then ground with a hammer mill and screened to the desired size
 - Aging for 90 days has improved plant performance

Pine bark with rice hulls

Rice Hulls

- Current product primarily used is parboiled rice hulls (PBH) which removes rice grain and kills weed seeds, previously:
 - Aged hulls
 - Composted hulls
- Provides root-zone aeration, used as a substitute for perlite or other coarse components
- Often used 20-25% by volume
- At this incorporation rate does not affect nutrient tie up

Benefits of using compost Microbes/Biologicals are one of composts benefits Microbes are also sensitive to high salts (from compost or fertilizer) Compost increases the Cation Exchange Capacity (CEC) typically 100-300 meq/100 g Sandy loams, typically are 0-8 meq/100 g Porosity Increases porosity in soil BUT, by itself, holds too much water in a container Peat vs. Compost peat: nonrenewable/finite, "dead" compost: sustainable, "alive"

Problems with "immature"/"unfinished" compost

- physical and chemical properties vary based on source and how mature
- high salts (ex: manure-based)

Unfinished/Immature compost:

- volatile organic compounds
- odor
- reheating can occur (if compost is dry and rewetted)
- may contain pathogens, weed seeds
- Media in container can rapidly settle

Other things to consider when using compost

- Tests for Maturity:
 - Quick
 - Check for odors Ammonia, Sulfur
 - large non-composted particles
 - Temperature young compost will still be hot!
 - Bag test:
 - Moist sample in ziploc bag overnight Does bag inflate? Off odors?

Commercial testing labs

Cornell Nutrient Analysis Lab

- \$45: % organic matter, salts, N, C, C:N
- \$75: above + full nutrients

University of Maine, Soil testing lab

- \$45: bulk density, salts, TS, TVS, C:N, most nutrients
- \$10: compost stability

Rutgers

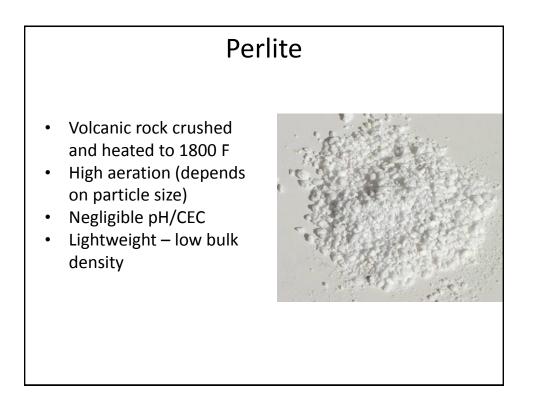
- \$45: salts, nitrate-N, maturity index
- \$125: above + OM, C-N, moisture, coarse/inert fragments

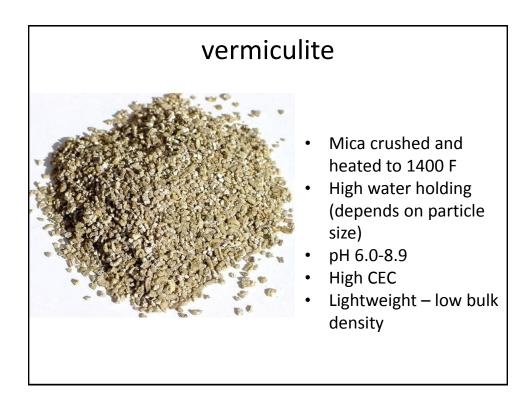
Characteristics of High Quality Compost *

рН	6.5 to 7.5
Soluble salts	≤5 mhos/cm
N, P and K	Ideally ≥ 1% (dry weight)
Bulk density	800-1000 lb/yd3
Moisture content	40 to 50 percent
Organic matter content	50 to 60 percent
Particle size	Can pass through 1/2-inch screen
Trace elements/heavy metals	Meet U.S. EPA part 503 regulations
Growth screening	Must pass seed germination and plant growth assays
Stability	Stable to highly stable
*Taken from: Stoffella and Kahr Systems. Lewis Publishers. (As	n. 2001. Compost Utilization in Horticultural Cropping reported by Taylor 2010)

Inert media components

Sand


- High bulk density
- Negligible pH, EC, and CEC
- Coarse size is best



Size Classes Sand			
Class	Particle Size (diameter)		
Very fine sand (VFS)	0.05 - 0.1 mm		
Fine sand (FS)	0.1 to 0.25 mm		
Medium sand (MS)	0.25 to 0.5 mm		
Coarse sand (CS)	0.5 to 1 mm		
Very coarse sand (VCS)	1-2 mm		

Particle size and height of water table
in container

Pore radius (cm)	Equivalent particle diameter (cm)	Height of water table (cm)
0.1	0.2 (very coarse sand)	1.47
0.01	0.02 (fine sand)	14.7
0.001	0.002 (very fine sand)	147

Blending components for nursery container media

 Combine various components so that media has the correct balance of physical, chemical, (and biological) properties

Example

- 80% pine bark, 10% peat and 10% sand.
 - Shredded bark has good air porosity
 - Peat increases the water-holding capacity and nutrient holding CEC
 - Sand increases the weight reducing container tipover

What about starter nutrient charge, nitrogen draft, and pH?

Recipe for "new" UC Mix

- 0.42 cubic yards Fir bark
- 0.33 cubic yards Peat
- 0.25 cubic yards S
- 1 pound
- 2 pounds
- 5 pounds
- 1 pound

- Sand Potassium-i
- Potassium-nitrate (13-0-46) Single superphosphate (0-20-0)
 - Pulverized dolomitic limestone

 - Ferrous-sulfate

